Uncountably many nonoscillatory bounded solutions to second-order nonlinear neutral dynamic equations
نویسندگان
چکیده
منابع مشابه
Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation
In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...
متن کاملuncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation
in this paper we consider the second order nonlinear neutral delay partial difference equation $delta_ndelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$under suitable conditions, by making use of the banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...
متن کاملExistence of Nonoscillatory Bounded Solutions for a System of Second-order Nonlinear Neutral Delay Differential Equations
A system of second-order nonlinear neutral delay differential equations ( r1(t) ( x1(t) + P1(t)x1(t− τ1) )′)′ = F1 ( t, x2(t− σ1), x2(t− σ2) ) , ( r2(t) ( x2(t) + P2(t)x2(t− τ2) )′)′ = F2 ( t, x1(t− σ1), x1(t− σ2) ) , where τi > 0, σ1, σ2 ≥ 0, ri ∈ C([t0,+∞),R), Pi(t) ∈ C([t0,+∞),R), Fi ∈ C([t0,+∞)× R2,R), i = 1, 2 is studied in this paper, and some sufficient conditions for existence of nonosc...
متن کاملBounded Nonoscillatory Solutions for First Order Neutral Delay Differential Equations
This paper deals with the first order neutral delay differential equation (x(t) + a(t)x(t− τ))′ + p(t)f(x(t− α)) +q(t)g(x(t − β)) = 0, t ≥ t0, Using the Banach fixed point theorem, we show the existence of a bounded nonoscillatory positive solution for the equation. Three nontrivial examples are given to illustrate our results. Mathematics Subject Classification: 34K4
متن کاملNonoscillatory Solutions to Forced Higher-order Nonlinear Neutral Dynamic Equations on Time Scales
By employing Kranoselskii’s fixed point theorem, we obtain sufficient conditions for the existence of nonoscillatory solutions of the forced higher-order nonlinear neutral dynamic equation [x(t) + p(t)x(τ(t))]∇ m + k ∑ i=1 pi(t)fi(x(τi(t))) = q(t) on a time scale, where pi(t), fi(t) and q(t) may be oscillatory. Then we establish sufficient and necessary conditions for the existence of nonoscill...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2019
ISSN: 1303-6149
DOI: 10.3906/mat-1812-23